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Abstract

WeconsidertheconstructionofSU(2)L®SU(2)R®SU(4)partial unificationmodels
as an exampleof phenomenologicallyacceptableunification modelsin the absenceof
supersymmetryin non-commutativegeometry.We exploit the Chamseddine,Felder
and Fröhlich generalizationof the Connesand Lott model building prescription.By
introducinga bi-modulestructureandappropriatepermutationsymmetrieswe construct
a model with triplet Higgs fields in the SU(2) sectorsand spontaneousbreakingof
SU(4).
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1. Introduction

As with otherextensionsof space—time,non-commutativegeometryprovides

a frameworkin which scalarHiggs fields may be introducedon the samelevel
as gaugefields. In higher dimensionalmodels,Higgs fields result from gauge
fields which originally carriedspace indices correspondingto the, now corn-
pactified,additionaldimensions.While this procedurehasan aestheticappeal,
phenomenologicalproblemsarisefrom the existenceof a single orderparame-
ter associatedwith the compactificationscale,usuallytakenat the Planck scale
[1]. Non-commutativegeometryprovidesan alternativeframeworkin which

differing scalesmay exist.
Thesegeometricalconsiderationsemergefrom applicationsof gaugetheory

beyondRiemannianspaces.The notion of a manifold is generalizedto be the
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product of a continuousmanifold by a discrete set of points. Gaugefields
now arise from appropriatelychosen fibre bundlesalong the continuousdi-
rections,while Higgs scalarsresult from gaugingthe discretedirections.Since
spinorfields arethe fundamentalfields in non-commutativegaugetheory, the
fermionic action can be introduced in a simple way. Consequently,realistic
phenomenologicalmodels canbe consideredwithin this model building pre-
scription and indeedthe standardmodel has beenmadethe subjectof this
approach[2].

If thesenotionsare to be applied to GUT models then the original model
building prescriptionof Connesand Lott must be reformulated [2-41. This
allows for gaugetheorieswhich are not constrainedto be productsymmetries.
The reformulation, introduced by Chamseddine,Felder and Fröhlich [5],
consistsof embeddingthe symmetrybreakingin the Dirac operatorsuch that
gaugeinvarianceis not broken.This simplifies andgeneralizesmodelbuilding
and allows for the introductionof permutationsymmetriesbetweencopiesof
space—time,yielding Higgsrepresentationsnecessaryfor symmetrybreakingat
appropriatescales.

The SU(5) GUT model constructedby this approachdid not provide any
additional suppressionon the rate of proton decayand thereforeis ruled out
experimentally.Appeals to space—timesupersymmetryin non-commutative
geometryhave yet to be formally developedanddo not appearto have an
obviousanswer.For this reasonother avenuesmust be explored in order to
yield acceptablemodels.Such examplesare provided by GUT models with
extendedsymmetrybreakingschemes,suchas SO(10). As well as suppression
of the proton decayrate, suchquark—leptonunified modelsallow for the con-
sistent inclusion of a right handedneutrino and the freedomto incorporate
other phenomenologicalfeatures,such as a reasonablevalue for sin2Ow [6].
Originally it was speculatedthat the Higgs fields requiredto implement such
a schemewithin non-commutativegeometrycould not be easily constructed
within the modelbuilding prescriptionandwould needto be addedas an ex-
ternal field, not associatedto anyvector [5]. Recently,however,Chamseddine
andFröhlich succeededin constructinga consistentSO(10) model [7]. This
representsan importantstep in the developmentof a deeperunderstanding
behindthe possibleorigin of massscalesin suchextendedmodelsby general-
izing the permutationsymmetrybetweenspace—timesto include conjugation
symmetriesas well as direct identifications.In order to realize an acceptable
model, however,it was necessaryto introduceadditionalsingletspinorsso that
Higgs fields transformingas 16’s could be included, yielding Cabibbo angle
mixing amongdown quarks.

While the SO(l0) breakingschemeis not unique,the spontaneousbreaking
patternrealizingthe Pati—Salampartialunification SU (2)L ® SU(2)R ® SU(4)
has an appealingsymmetry in which the phenomenologicalfeatuesare most
transparent[81. Importantly, this is also the minimal symmetrygroup incor-



BE. Han/on, G.C. Joshi/Journalof GeometryandPhysics14 (1994)285—304 287

poratingbothquark—leptonunificationandthe quantizationof electric charge.
The electroweaksectorof suchleft—right symmetrictheorieshasalreadybeen
investigatedby Chamseddineet al. yielding spontaneoussymmetrybreaking
of SU(2 )R by triplets [5]. Other approachesto non-commutativegeometry,
originally consideredby Coquereauxet a!. [9], Dubois-Violette et al. [10]
and Balakrishnaet al. [11], have also been generalizedto yield a left—right
symmetricweak interactionmodel, this time with doubletHiggsfields [121. It
was foundthat this mademaximal useof the gaugeconnectionin the discrete
directions. While thesealternativemodel building prescriptionswill not be
pursuedhere, they help to demonstratea natural identification of left—right
symmetricmodelswith non-commutativegeometry.

In this paperwe wish to extendthis investigationof left—right symmetric
modelsto the Pati—Salamunification symmetry.Exploiting the modelbuilding
approachof Chamseddineet al. [51we will first considera minimal model
andthenexplicitly constructa model with triplet Higgs in the SU(2) sectors
andspontaneousbreakingof SU (4). To realize suchaschemewe will include
a bi-module structuresimilar to that for the addition of SU(3) colour to the
standardmodel [2]. However,unlike in the SU(3) case,we do not wish the
symmetry breaking matrices in thesedirections to be identically zero, thus
introducinga non-trivial extension.We find thata very naturalmodelemerges
without the needto introducesinglet spinorsor an additionalset of conjugate
fermionsto producecouplingto conjugatebi-doublet Higgs.

2. The model building prescription

We wish to give an overviewof the model building prescriptionoutlined by
Chamseddineet al. [5]. The geometricalsettingis thatof Connes[4], with the
reformulationthat the choiceof gaugestructureis defineddirectly within the
Dirac operator.This is in contrastto the original prescriptionof Connesand
Lott [2] wherethe gauge structureresults from the choiceof vector bundle
E, definedas a finite projectiveright moduleover the algebraA defining the
non-commutativespace. It follows that the natural choice of vector bundle
must now be E = A i.e. the orthogonalprojection is trivial. With this choice
the connectionandcurvaturehavethe simplestform.

The notion of geodesicdistance is incorporatedin the concept of a K-
cycle. A K-cycle over the involutive algebraA is a *-action of A by bounded
operatorson a Hilbert spaceN anda possiblyunbounded,self-adjointoperator
D, denotedDirac operator,such that [D,f] is a boundedoperatorfor all
f e A and (1 + D2 ) ~ is compact.As we will be interestedin four point
spaceswe will cast definitions about this choice although they are easily
extendedto any numberof points. Let X be a compact Riemannianspin
manifold, A

1 the algebraof functionson X and (Ni, D1) the Dirac K-cycle
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with N1 = L
2(X,~/~d”x) on A

1. Denote by ~5 the fifth anticommuting
Dirac gammamatrix, the chirality operator,given by ys = Y!Y2Y3Y4 in four
dimensionalEuclideanspace,defininga Z2 gradingon N1. Let A2 be givenby
A2 —~ Mn(C)El~Mp(C)El~Mq(C)eMr(C),where Mn(C) is the set of allnxn
matrices,with the K-cycle (N2,D2) andN2 = N~~ ~Nq~ corresponding
to the Hilbert spacesC’~,CP, cq andcr respectively.The productgeometryis
thengiven by

(1)

with the Dirac operatorcorrespondinglywritten as

D=D1®l®l+y5®D2, (2)

D2 being comprisedof tensorproductsacting on the four point Hilbert space

N2. The decompositionof N2 diagonalizesthe actionof f ~A

f—~diag(f1,f2,f3,f4)

The operatorD is then

~®l®l y5®M120K12 y5®M130K13 y5®M14®K14

D— y5®M21®K21 Ø®i®i y5®M230K23 y5®M24®K24
— y5®M31®K31 y5®M32®K32 Ø®1®l y5®M34®K34

y5®M41®K41 y5®M420K42 y5ØM43®K43 Ø®l®1
(3)

whereMmn, m ~ n, is an m x n complexmatrix such that ~ = Mnm and
eachKmn is a 3 x 3 family mixing matrix. The Mmn correspondto the tree
level vacuum expectationvalues of Higgs fields, the chosen form of which
determinesthe symmetrybreakingpattern.

The spaceof forms Q* (A) = ~°~Q’~ (A) is generatedby elementsa0da1

dak E Qk (A) such that a0, a1,...e A. With £ = A a connectionis given by
the element

p = >a~db~E Q
1 (A) , (4)

with the curvaturespecifiedby

t9=dp+p2�Q2(A) (5)

whered 1 = 0 and the p2 term doesnot vanish. An involutive representation
of Q* (A) by boundedoperatorson N, with algebraB(N), is definedby the
map ir : Q*(A) —~ B(N) given by

jr(a
0da1•• dan) = ao[D,a1][D,a2]... [D,a~] . (6)
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Consequently

ir(p) = ~a’[D,b’] . (7)

Evaluating (7) yields the result

/ A1 y5®4112®K12 y5®~13®K13y5®~14®K14

— y~0 ~~2i0 K21 A2 Y5 ® ~23 OK23 Y5 0 ~24 0 K24
— { Y5 0 ~3! ® K31 Y5 0 ~32 OK32 A3 j5 0 ~ OK34

0 ~41 OK41 Y5 0 ~42 OK42 y~0 9~143OK43 A4
(8)

the A’s and~‘s aredeterminedin termsof the a’s and b’s by

Am~a,jç~b,’~

çbmn = ~a~n(Mmnbh — b,~nMmn) (9)

satisfying4 = Am and cb~= ~bnm.The two form dp = >~da’ db’ with
imageunderir given by ir (dp) = >, [D, a

1] [D, b’] can be similarly evaluated.
Unitary gauge transformationsby g e U(A) = {g eA: gtg = l} can be

definedin termsof transformationson the a’ andb’ such that

a’ ,~ = ga’,

bi~gbi = b’g~. (10)

This definition implies the constraint

= 1 , (11)

which can be imposed without loss of generality. It is straightforward to
computethe actionof gaugetransformationson ir (p) which in component
form can be written as

= gmAmg~+ g,,~g,t,

(12)

Thus theAm arethegaugefieldswhile cbmn+ Mmn arescalarfields transforming
covariantly.The q~mnrepresentfluctuationsaround the vacuumstateso that
we arein fact working in the spontaneouslybrokenphasefor which the Higgs
potentialwill be minimized when cbmn = 0.

A crucial aspectwhich must be consideredis that the representationir is
ambiguous,with the correctspaceof formsactuallygiven by Q* (A)/Ker ir +
dKer m [3]. Working on £7 * (A) will result in theappearanceof auxiliary fields
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into which the scalarHiggs potentialcould be absorbed,removingthe Higgs
mechanismfrom the model.Thepotentialis savedfrom disappearing,however,
by including the 3 x 3 family mixing matricesKmn. Nevertheless,in calculating
the potentialit is necessaryto determinewhich of the auxiliary fields aretruly
independent.If all the auxiliary fields areindependentthe Higgs potentialwill
disappearregardless.This placessevereconstraintson modelbuilding andthe
choiceof vacuumexpectationvaluesfor which the independenceor otherwise
of the auxiliary fields will depend.

Since the fermionic fields are the fundamentalfields, the spinor actioncan
be expressedsimply as

= (~P,(D + itp~/’) . (13)

To determinethe Yang—Mills action the notion of Dixmier trace must be
considered.The actionis given by the positive definiteexpression

I = 1/8Tr~(6’2ID~4), (14)

where the Dixmier trace is defined by

Tr~(ITI)= limw_T~>~Rj(T) (15)

for a compact operator T and eigenvalues ~,of TI. For the Dirac operator
the action can be equivalently expressed as

1= ~fd4xTr(tr(~2(0))) , (16)

where tr is over the Clifford algebra and Tr is over the matrix structure.
Finally, the action is analytically continued to Minkowski space.

3. A minimal model

By minimal, We are making reference to a model for which the simplest
Higgs sector can be constructed to implement the required symmetry breaking
scheme. This is in analogy to the minimal 0(10) model of Witten [13]. We
will consider a Riemannian spin manifold extended by four points with the
algebra given by

A
2=M2(C)e~M4(C)E’~iM4(C)~oM2(C), (17)

together with the permutation symmetry

i_ i
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In this way the second and third copies are identified and we have Higgs
fields transforming in a self adj oint rather than a productrepresentationin
this region. With this choice the vector potential m(p) becomes

AL XL XL 9~

= Xj. A4 X XR (18)XL x A4 XR

XR XR AR

where the gauge fields A = y”A~,are self adjoint n x n gaugevectors,X is a self
adjoint 4 x 4 scalar field (i.e. X23 = ~32 = ‘2)’ XL and XR are 2 x 4 complex
scalar fields and ~ is a bidoublet scalar field. AL,AR and A4 are U(2)L, U(2)R
andU(4) gauge fields respectively.

Note that the Pati—Salam partial unification has no U (1) symmetries.Thus
inthereductionfromU(2)L®U(2)ROU(4)toSU(2)L®SU(2)ROSU(4)
we do not need to relate or introduce U (1) factors. To induce the reduction
we impose the constraint

Tr(AL + AR) = 2Tr(A4) = 0 , (19)

reducing U(2)L 0 U(2)R to SU(2)L 0 SU(2)j~ and U(4) to SU(4). It is
important to stress that these permutation symmetries and trace conditions are
constraints introduced by hand in order to yield phenomenologically credible
results. X will now introduce spontaneous breaking of SU (4) to SU(3) 0
U(l)B_L, XL,R allows for asymmetric breaking of SU(2)L,R by appropriate
choices of vacuum expectation values while q~is responsible for symmetry
breaking at the electroweak scale.

Introducing the fermionic sector now poses a dilemma. The multiplet struc-
ture for onefamily is

Ur Ub Ug UI =
WL,R = — ( 0)

Ur Ub Ug UI = e L,R

where lepton number is identified as the fourth colour. The representation
structure with respect to SU(2)j. 0 SU(2)R0 SU(4) is WL = (2,1,4) and

= (1,2,4). Clearly, there are no gauge invariant couplings of these fields
with the Higgs scalars XL and XR. Coupling of fermions to the bidoublet field
~ is responsible for the generation of the usual quark and lepton masses but
the generation of a heavy right handed neutrino depends on an extended
interaction sector. This neutrino can get such a mass only through mixing with
exotic fermions [14]. This is difficult to implement in this schemebeyond
the inclusion of fermionic singlets. Note also that we cannot appeal to higher
order effects as we are dealing with classical geometries. A viable model without
exotics must, therefore, induce the required breakingand massgenerationat
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tree level from Higgs scalars corresponding to the standard fermions only. That
is we require a non-minimal model.

It is worthwhile pointing out that with no identification betweenthe SU(2)
and SU(4) sectors that fermions correspondingto thesedifferent copies of
space—time will not, in fact, have the requiredrepresentationstructure.That
is, we would have fermions transforming in the fundamental representation2
of SU(2) which are singlets under SU(4) and independent fermions in the 4
of SU(4) which are SU(2) singlets,rather thanwith the multiplet structure
(20). While it may be possible to write down an appropriate spinor W to
implement the required representationsthe necessaryidentificationswould
have to be imposed in an ad-hoc way, external to the model building program.
This problem of identification is related to the indifference of the SU(4)
fermion representations on their chirality.

4. A non-minimal model

An examination of the vector potential (18) demonstrates that it is not
possible to have Higgs scalarstransformingas a productrepresentationwith
one component the adjoint of a chosen symmetry. This is a limitation imposed
by the matrix structure. Clearly, an extension is necessary if such Higgs scalars
are to exist. We will again consider a Riemannian spin manifold extended by
four points, this time with the algebra

A2 = M2(C)0M2(C)E~M2(C)+M2(C). (21)

The U(4) sector is now introduced to the four point space by adding the
auxiliary algebra 82, with right action on N, given by

82 = M4(C)~M4(C)eM4(C)~M4(C). (22)

We makethe samenaturalchoiceof vectorbundleF = 8, where8 = A1 082.
The physical Hilbert space can now be written as

P=E®NOF, (23)

that is we have introduced a bi-module. Writing N~andN~for the Hilbert
spacescorrespondingto the algebrasA2 and82 respectively,N can be sugges-
tively written as

N=N~oL
2(S)oN~. (24)

Wewill consider this as defining U(2) o U(4) gaugestructureon eachof the
four copies of space—time as there is no reason, a priori, to assume that a
single gauge symmetry only can be associated with each copy.
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Corresponding to this extension we write down the generalized connection

one-form

p = ~a’db’o 1 + 1 o~A’dB’ . (25)

Note that the first 1 is a4 x 4 unit matrix and the seconda 2 x 2 unit matrix.
Wenow introduce the Dirac operator

D=Diololol+y50D2 , (26)

where D2 is given by

D2 =

0 m12®M12®K12m13®M13®K13 m14®M14®K14
m21 ®M21 OK21 0 m23®M23®K23 m24ØM24OK24
m310M31OK31 m32OM32OK32 0 m34®M34®K34
m41 0M41OK41 m42 oM420K42 m430M43 0K43 0

(27)

with mm,, the tree level vacuum expectation values in the U(2) sector, Mmn the
vacuum expectation values in the U(4) sector and Kmn are 3 x 3 family mixing
matrices. We will consider the construction of ~t(p) for the general case first,
introducing the relevant permutation symmetries between space—times once
the form of the action has been established.

Since d 1 = 0 we can re-express the connection p as

~ . (28)

The image of p under it is then

ir(p)=~(a’ol)[D,b’ol]+~(1oA’)[D,1oB’]

= m(p)1 + m(p)2 , (29)

where (suppressing the ~~‘5 for brevity)

=

A2 ~i12OM120K12 q~13oM13oK13 95140M14®K14

A2 q~230M23®K23~24®M24®K24
~31 OM3I OK31 ~32 ®M32OK32 A2 9534 ®M34®K34
954i oM41OK41 9542 ®M42OK42 95~OM43 0K43 A2

(30)

and
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=

A4 m120~12OK12m13®~13OK13m140~14®K14
m21 0 ~21 OK21 A4 m23 0 ~23 ® K23 m240 124 OK24
m31 O~31OK31 m32O~32oK32 A4 m34o~b34®K34
m41 0 ~ 0 K41 m420 ~42 0 K42 m430 ~ 0 K43 A4

(31)

with q~mnand ~mn given by

95mn = ~a,’,,(mmnbh — b,c,mmn)

~mn = ~A~n(MmnBh B,’nMmn) (32)

The two form dp will now be given by

dp=~d(a
1®l)d(b~Ol)+~d(l®A1)d(l®B1), (33)

with the image under it

m(dp) = ~[D,a’O l][D,b’ 01] + ~[D, 1 oA’][D, loB’] . (34)

Gauge invariance of the spinor action (W, (D + it (p) ) W) under the transfor-
mation W 8W = gW, whereg e U(A) 0 U(8), demandsthatp transforms
inhomogenously such that

= gpgt + gdg~ , (35)

where g = g
2 0 g4. This can be written as

gp = {~(g2a1)d(b1g~t)— g2(~a’b’— 1)d~~}0 1

+ ~ (36)

so that gaugetransformationscanbe defined directly on the constituentele-
mentsby

a’—*
8a’ = g

2a’ A’—~
8A’= g

4A’

b’—~b’= b
1g~ BL~rBi = B1g~ (37)

if the constraints

= 1 and >A’B’ = 1 (38)

areimposed.
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Gauge transformations can be expressed in the representation it which from
(35) take the form

it(~p) = git(p)gt + g[D,gt] (39)

and in component form become

~A2 =g~A2g~+ g2~g~,~A4 = g4A4g~+ g4Øg4t, m = 1,2,3,4
8(cbmn0Mmn+mmn0~mn+mmnOMmn) (40)

= g
20g4(95mnOMmn+ mmnO~mn+ mm,,0Mm,,)g~Og~, mV=n

ThusA2 andA4 areindeedthe U(2) andU(4) gauge fields with the combina-
tion (cbm,,OMmn+ mmnO~mn+ mmnOMmn)scalarfields transformingcovari-
antly, where

8(mmnOMmn)= mmnoMmn in D. The form of the scalar fields
demonstratesthat qS,,,,, and ‘~mnrepresentindependentfluctuationsaroundthe
vacuumstatespecifiedby mm,,0 Mmn.

The representation of the curvature it(9) requires a determination of it (dp)

which, although a tedious calculation, is a direct generalization of the compu-
tation presentedin [5]. Thus, ratherthanoutlining the detailedprocedurewe
will simply presentthe results. Expressedin termsof the gauge fields, Higgs
fields and auxiliary fields the diagonalelementsof the curvaturecan be written
as

— 1. pv~m(2)/mm—2Y 1W +~? /11)

+ ~ (IKmp~(I95mp0 Mmp + mmp0 ~mp
p~m

+mmpOMmpI2+~mmp®Mmp~2))—Ym—Xmm (41)

where

Xmm = ~a~d2b,, +

+ (~‘A~ + A~A~) + (a~’A~+ A~A~) - 2ArA~

Ym = ~ ~a~KmpI2ImmpI20IMmpI2/4,, + ~
p~m i

— ~ Am ~ Am r Am A~
— ~-‘P~’2v— U~~’1

2~ + ~ ~2v

~ = ~ — ~9~A4~+ [At, A~] (42)

and,for example, KmpI
2 = KmpKpm. Thenon-diagonalelementsof the curva-

ture aregiven by (m ~ n)
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it(e)m,, = y
5Km,,(Ø(cbm,,oMmn + mmn0~mn)

+(AT+A~)(95mn0Mmn+mmnO~mn+mmn®Mmn)

— (cbm,, 0Mm,, + mm,,0 ~mn + mmn®Mmn)(A~+ Az))

+ ~ KmpKpn((qSmpOM!np+mmp0~mp+mmp0Mmp)
pV=m,n

x(q5~,,®M~,,+ m~,,O’I’~,,+ m~,,OM~,,)

— mmpmp,,0 MmpMpn)— Xmn (43)

where

Xmn = ~ KmpKpn

i p�’m,n

x {a~(mmpmp,,0 MmpMp,,b~— b~mmpmp,,0 MmpMpn)

+ A,, (mmpmp,, 0 MmpMp,,B~— B~mmpmp,,0 MmpMpn)}. (44)

Recall that we are working in four dimensionalEuclideanspaceso that the
gamma matrices employed satisfy: y~= —y~,,{y~,y~} = —2ô1W and y~ =

Y1Y2Y3Y4. Note alsothat the curvature is self-adjoint so that it(9)~,, = ir(19 )nm.
The Euclideanspaceaction can now be determinedby exploiting (16) and
takes the form:

I = _fd4x~Tr(~F,7~2)Fm(2)1W+

— ~I ~ (IKmpI
2(I95mp 0 Mmp + mmp0 ~mp + mmp 0

p~m

~ 2\\ v v 2+ mmpO~mp)JimJtmm

+~ ~ IKmpI2I(~(95mn0Mmn+mmn®~mn)
p~m,n

+(A~+A~p)(95mn0Mmn+mmn®~mn+mmn0Mmn)

— (çbmn 0Mm,, + mm,,O~mn+ mm,, OMm,,)(A~,+ A~p))I2

~ IIKmpI2((95mp0Mmp+mmp0~mp+mmp0Mmp)
n~’mp~m,n

x(q5~,,0Mg,, + mr,, 0~,, + mr,, oM~,,)

— mmpmp,,0 MmpMp,,) — Xm,,12) (45)

where we normalize the trace such that Tr 1 = 1. Note that since special
unitary groups only will be considered, cross terms of the field strengthshave
been ignored.

Wecan now address ourselves to the construction of an SU (2) L OSU(2)R0

SU(4) partial unification model. In order to achieve two independent U(2)
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gauge symmetries, rather than four, and to induce triplet Higgs fields, we will

introduce the permutation symmetries

a~=a~, a~=a~

bI=/4, b~=b~ (46)

Theseare theidentificationsmadeby Chamseddine et al. [5] in their consid-
erationson the left—right symmetricelectroweakmodel. However, ratherthan
a gradedtracelessnessconditionon it (p)i wewill simplyimposethe constraint

Tr(it(p)i) = 0 , (47)

reducing U(2)LOU(2)R to SU(2)LOSU(2)R,so avoidingthe introductionof
U(l) factors. Since we want only one U(4) field all the copies in it(p)2 must
be identified. If we were to choose identifications of the form (46) we would
be considering a model with U(4)L 0 U(

4)R gauge symmetry. The additional
identifications which we must impose to avoid this are analogous to the criteria
required to yield an SO(10) rather than an SU(16) symmetry in the S0(10)
models of Chamseddine and Fröhlich [7]. That is, we are comparing the case
of a model with symmetry group SU(2)L 0 SU(2)~0 SU(4)~0 SU(4)R,
which is a subgroup of SU (16), with the Pati—Salam partial unification which
can be embedded as a maximal subgroup of S0(l0).

To achieve a Higgs structurewhich will allow for the generationof a large
right handed neutrino mass at tree level we must consider, along with direct
identifications between space—times, the inclusion of a conjugation symmetry.
In this way we also introduce conjugate spinors into the spinor representation
W. This is to be contrasted with the electroweak case in which an additional
conjugate set of fermions was needed to produce the full range of allowed
Yukawa couplings. As S0(1,3) and SU(2) have conjugation matrices the
conjugate spinors can be written as

WL,R = 1T2CWLT,R , (48)

where C is the Dirac conjugation matrix and it
2 the SU(2) conjugation

matrix. Since we require complex representations in the U (4) sector to be
transformed to their complex conjugate, the charge conjugation operatormust
be an outer automorphism on the U (4) algebra. The conjugation symmetries
that we impose in the U (4) sector, then, are given by

~ A~*4~~+A~

B~_~B~*,B~*~_*B~ (49)

whereA’,, is the complexconjugateof Am corresponding to the anti-represen-
tation,togetherwith the identifications
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A~=A~, A~=A~

B~=B~, B~=B~ (50)

so yielding a single U(4) interaction.
Note that sinceall S U(2) representationsarereal, the identificationsmade

in (46) canbe equivalentlyconsideredas conjugationsymmetries.Thus,while
all the space—timecopies are identified in the U(4) sectorthe SU(2) sector
remainsto differentiatebetweenthe left andright regionsof the model. Fur-
thermorewithin eachregion,left andright, a consistentconjugationsymmetry
prevailsbetweenspace—times.The addedcomplicationin the U(4) sectoris,
as before, relatedto its chiral symmetry.The spinorW can thusbe written as

W= (51)

wherethe left andright handedassignmentsfollow from imposingthe chirality
condition

(y5®F)W = W , (52)

with F = diag (1, —1, 1, —1), introduced after the Wick rotation to Minkowski
space. Since all the elements in the U (4) sectorare identified we will reduce
U(4) —* SU(4) by simply imposing Tr(A4) = 0.

With our choice of symmetries between space—times the vector potential
it (p)i takes the form (suppressing the family matrices Km,, and the y5’s)

AL 4~’~oM12q5’0M13 q5oM14
— 4~,’~~®M21 AL 95*OM çb’

t0M
24 (53)

it P 1 — 95’t 0 M31 95~t0 M32 AR 0 M34

95toM41 95/*toM 4’~0M43 AR

whereAL and AR arethe SU(2)L andSU(2)Rgauge fields, 4J~1)and41) are
singlets and triplets in the respective groups and 95 is a bi-doublet. Similarly,
it (p ) 2 takes the form

A4 m12®4~
2~m

13®A~
2~m

140X
m21 OA~t A4 m23OS m24OA(

2)t
it(p)

2 = 2’ — 2 (54)m31Ozi’ “ m32o~’ A4 m340A
m14OX m420A~

2~m
43OA~

2~ A
4

From the space—time symmetries the constituent fields transform as

4 x 4 = 6 + 10

X-’-4x4=1+15 (55)
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under SU(4). We know the covariantform takenby Higgs scalarsunder a
general gauge transformation from (40). Consequently, the Higgs fields which
enter the model will transform under SU(

2)L 0SU(2)R OSU(4) as:

AL = A
1~~0 M1~+ m120 A (2)

(3,1,6) + (3,1,10) + (1,1,6) + (1,1,10)

AR = A~’~oM43 + m43OA~
2~

(1,3,6) + (1,3,10) + (1,1,6) + (1,1,10)

= 95oM
14 + m14oX

~ (2,2,1) + (2,2,15)

= 95” 0 M13 + m13 0 A~
2~

~ (2,2,6) + (2,2,10). (56)

The other entries follow from the inter-space—time symmetries. This in turn
breaks the Higgs field degeneracy in the vector potential. Embedding our
partial unification model into SO(10) we see immediately that our Higgs fields
transform as components of relevant Higgs representations often chosen for
such models, e.g. 10,120, 126 and 210. Wecould easily obtain other components
by different choices of symmetries between space—times. Nevertheless, with the
choice of symmetries taken we have generated the Higgs components which
are required to have non-zero vacuum expectation values for a non-minimal
model.

With the product structure between the SU(2) and SU(4) sectors made
manifest in the form of the Higgs scalars we must correspondingly realize this
mathematical structure in the spinors, which take the form

WL,R = [~] 0 (a,b,c,d) (57)

where the column [u,d] indicatesvalency and the spin-zerorow (a,b,c,d)
indicates colour degrees of freedom [8]. This is to be compared with the
physical realization given by (20). From the spinor action (W, (D + it(p))W)
we see that we can generate the Yukawa couplings:

= K14~7L(~+ (~))WR+ K32~7Lt2(~*+ (~*))tT2WR

— iK21W[t2C’(AL + (AL))tyJL_iK
34w1r2C’(AR+ (AR))t~’R

+ H.c. (58)

where the Hermitian conjugates emerge automatically from the self-adjointness
of it (p). The coupling to c2~ will again be responsible for the usual quark and
lepton masses. However, we now have a tree level coupling which can yield
large right handed neutrino masses by the see-saw mechanism, i.e. the coupling
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producing Majorana masses given by the components (3, 1, 10) and (1,3, 10)
of AL andAR respectively[8]. Couplingto the conjugatebi-doublet Higgs is a
naturalconsequenceof the introductionof conjugationsymmetries.

The true viability of the model is dependenton the survival of the Higgs
potentialonce suitablevacuumexpectationvalues for the Higgs scalarshave
been chosen. This correspondsto the elimination of unwantedcomponents
from (56), where we will take the only componentswith non-zerovacuum
expectationvaluesto be 4L “-j (3,1, 10), AR (1,3,10) and~l’ (2,2,1). The
symmetry breaking scheme will then take the form:

SU(2)L®SU(2)R®SU(4) (AR)=vRsU(
2) OSU(3)c 0 U(l)y

(~0 SU(3)cOU(l)Q

where we have the expectation value hierarchy (AL) << (Ii) << (AR). The form
of the vacuum expectation values is dictated by the requirement that U(1 )Q
survive so that only charge zero components can be non-zero. For a fractionally
charged quark model in which the gluons also remain chargelessthe charge
operator Q is given by [8]

/1/3 0 0 0

I 01/3 0 0Q = ‘3L + hR + 1/2 0 0 1/3 0

\~ 0 0 0—1

so that the Higgs vacuumexpectationvaluesbecome

0000
(01\ 0 0 0 0

(AR) = VR ~ o) 0 0 0 0 0 = VR520S4

0001

0000
/0l\ 0000

(AL) ~VL~00)O 0 0 0 0 =VLS2OS4

0001

1000

~ =(~~2)014 (60)

0001

Wecan now determine the independent contributions from the auxiliary fields
which must be eliminated. The X and Y fields are given by



BE. Han/on, G.C. Joshi/Journalof GeometryandPhysics14 (1994)285—304 301

= 1K121
2(~a~VLI2S2S~0 S

4b~+ A’IvLI
2S2S~0 5

4B’)

+ IKi4I
2(~a~(~iI2 ~U22) oI

4b~

+A (~ 2)0I4B

= IK34I
2(~a~IvRI2S~S2 0 S~b~+ A1*IvRI2S~S

2 0 S4B’~)

: ~:2;~2 0) ~20 I4b~J

x12 = x34 = = X14 = 0

X13 = ~Kl2K23{a~vLu2(S2 ~ S4b~— b~S2OS4)

+ A’vLu2(S20 S~B’~’— B’S20 S4)}

+ K!4K43{a~vRU!(S2 0 S4b~— b~S2OS4)

+ A’VRUI (S2oS4BI* — B’S2 0 S4)} (61)

where the others follow from the permutation symmetries. Clearly, the field
X13 is auxiliary and thus must be eliminated. The independent contributions
from the Y fields can be easily found where, for example, Y1 can be rewritten
as

= IKl2I
2(2IvLI2S

2S~ OS4 — (~a~IvLI
2(S~S20 S

4b~— b~S~S2OS4))

1000 1000

—(~A’IvLl
2(S

2S~O~ ~ B’—B’S2S~o~ )))

0000 0000
/ 2

2 i U1+1K141 (2~,o 2 014

- (~a~((~ IU~I2)oI4b~-b~(1u212 1u112) 014)))

with the others following similarly. We therefore have the non-independent
contributions
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/ / 2
21K 2 2c’c’f c’ 21 U

112 VL ~‘2~)2 0 ~~)4+ 14 t r~ 2 0 ~\ UU~

= 2 (IKi2I2Imi2 0 M1~
2+ IKi

4I
2Imi

4 0 M1412) (62)

where the remainder is eliminated. Note that the Xmmare also eliminated. The
Higgs potential can thus be shown to take the form (where an orthogonality
condition on the components has been imposed to simplify the calculations)

V = (Tr K12!
4 — (Tr 1K

121
2)2)IIAL + m

12 0 Mi2!
2 — mi

2 0 Mi2!
2!2

+ (Tr K
14!

4 — (Tr K
14!

2 )2 ) ~ + m
140 M~i4I

2— rn
14 o M14I

2I2

+(TrIK
23I

4— (TrIK
23I

2)2)IIc~*+ m
230M23!

2 — Im
230M23I

2I2
+ (Tr K

43!
4 — (Tr 1K

431
2)2)IIAR + m

430 M431
2 — 1m

43 0 M43I
2I2 (63)

and thus survives. To yield this potential the independent contributions from
the Y’s have been modded out by hand rather than via the equations of
motion. This is necessary since the potential will still otherwise vanish, even
though the Y’s yield non-independent contributions.The causeof this is our
over simplification in choiceof vacuumexpectationvalues by setting the CI”
contribution to zero. Including a small non-zero expectation value for the
(2,2, 10) component will not affect the symmetry breaking pattern nor the
fermion sectorsince it decouples by the requirement of Lorentz invariance.
However, this will now give non-trivial contributionsfrom the Xm,,’S so that
the full potential can be arranged to survive.

Looking more closely at the fermionic action it follows from the quark—
lepton unification that the same family mixing matrix will operate on the u

and d quarks. This does not occur in the SU(5) and standard model examples
previously considered since an additional set of spinors must be introduced
so that the u quark may attain a non-zero mass [5]. This also allows for
different mixing matrices and thus the existence of a Cabibbo angle. Quark—
lepton unification eliminates the need to introduce an additional set of spinors
and also, therefore, different mixing matrices.This was the dilemmafacedin
the S0(10) model of Chamseddine and Fröhlich [7] for which introducing
singlet spinors resolved the problem. Compelled by the success of the model
we have constructed so far we will take a different approach to this problem.
For models without a right handed neutrino no mixing occursin the neutrino
sector because the mass matrix is identically zero. Quark—lepton unification
implies breaking this neutrino degeneracy. Note also that we now have an
additional degree of freedom from introducing a bi-module so that family
mixing for quarks and leptons may be differentiated. Wewill thus extend the
mixing matrices to take the form

Km,, = diag(f,,p,f,,’p)m,, , (64)
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acting on dr” andU~in the multiplet structureof (20), wherea refersto the
threefamilies. This is analogousto the additional mixing allowed in other
modelsby giving the u quarksnon-zeromassesas well as providing mixing
among neutrinos. In this way u quarks and neutrinosattainadditionalstructure
on the same footing, which is consistent with the concept of neutrinos being
the fourth up quark.

It is straightforward now to write down the full fermionic and bosonic
action from (13) and (45), where consistent normalizations for the kinetic
energies can be accomodated by an appropriate rescaling. Since we have a
bi-module structure separating the introduction of SU(2) and SU (4) we are
free to implement different coupling strengths in these sectors. Wethus have
an acceptable model for which many phenomenonlogical parameters may be
adjusted to yield results close to the experimental values.Importantly, we have
avoided extending our Higgs sectorbeyondthatneededto producethe required
symmetry breaking pattern.

5. Conclusion

By generalizing previous approaches to include a non-trivial extension by
way of a bi-module we have been able to formulate a model which can yield
tree level masses to neutrinos, avoiding the quantization problem and the
inclusion of exotic fermions. Furthermore, we have broken the Higgs field
degeneracy inherent in the vectorpotentialthusenlargingour choiceof scalar
fields. While not the simplest approach to the introduction of neutrino masses,
left—right symmetric models of this kind have the advantage of providing
the freedom to incorporate important phenomenological features by the in-
clusion of intermediatescales.Such symmetrybreakingscales,corresponding
to the “distance” between copies of space—time, can now find a geometrical
basis. Thus, in the absence of a quantization mechanism or embedding of
supersymmetry into non-commutative geometry our approach yields a consis-
tent formulationas well as utilizing more fully the freedomprovided by this
mathematicalframework.
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